Advanced Topics in Condensed Matter

Lecture 7- Mössbauer effect

Dr. Ivan Zaluzhnyy Prof. Dr. Frank Schreiber

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Mössbauer isotopes

IA																	VIIIA
1 H																	² He
	IIA											IIIA	IVA	VA	VIA	VIIA	
з Li	4 Be											5 B	6 C	7 N	8 O	9 F	¹⁰ Ne
11	12											13	14	15	16	17	18
Na	Mg							1440				AI	Sı	Р	S	CI	Ar
		IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB						
19	20	21	22 T:	23	24	25	26	27	28	29	30 7 10	31	32	33	34	35	36
n 40	Ca	50		V	Cr	IVIN	ге 57	0	1NI 61	Cu	2n 67	Ga	Ge 73	AS	Se	Br	N 1
							0.										
37 Rh	38 Sr	39 V	40 7 r	41 Np	42 Mo	43 To	44 Ru	45 Rh	46 Pd	47	48 Cd	49 In	50 Sn	51 Sh	52 To	53 I	54 Xo
no	5		21	пр	NIO	99	99	TUI	Tu	107	201		117	121	125	127	129
							101						119			129	131
55	56 Do	57	72	73	74	75 Do	76	77	78	79 A	80	81 T;	82 Dh	83 D:	84 Do	85 ^+	86 Dp
133	ва 133	La 139	□ 178	1a 181	VV 184	He 187	US 188	۱۲ 191	195	Au 197	⊓g 201	11	PD	ы	PO	AL	Rn
	100	100	180*	101	186*	107	190*	193	100	107	201						
87	88	89	104	105	106	107	108	109	110								
⊢r	На	Ac	Rf	Db	Sg	Bh	Hs	Mt	Dm								

White boxes – Mössbauer isotopes

Handbook of Nuclear Chemistry (Springer, 2004)

58 Ce	59 Pr 141	60 Nd 145	61 Pm 145 147	62 Sm 152 154*	63 Eu 151 153	64 Gd 154– 158*	65 Tb 159	66 Dy 160– 162*	67 Ho 165	68 Er 166 168*	69 Tm 169	70 Yb 172 174*	71 Lu 175
90 Th 232	91 Pa 231	92 U 238*	93 Np 237	94 Pu 239	95 Am 243	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr

Fluorescence in ⁵⁷Fe

Mössbauer isotopes

IA																	VIIIA
1 H																	2 He
	IIA											IIIA	IVA	VA	VIA	VIIA	
з Li	4 Be											5 B	6 C	7 N	8 O	9 F	¹⁰ Ne
11	12											13	14	15	16	17	18
Na	Mg							VIIID				AI	Si	Р	S	CI	Ar
		IIIB	IVB	VB	VIB	VIIB		VIIIB	_	IB	IIB						
19	20	21	22 T:	23	24	25	26	27	28	29	30	31	32	33	34	35 Du	36
N	Ca	SC	11	V	Cr	IVIN	Fe	Co	INI 61	Cu	2n 67	Ga	Ge 73	AS	Se	Br	K r 83
							57		01		07		10				00
37 Dh	38 Sr	39 V	40 7 r	41 Np	42	43 To	44 Du	45 Dh	46 Dd	47	48 Cd	49	50 Sp	51 Sh	52 To	53	54 Vo
	51		21	мр	IVIO	99	99	пп	Fu	107	201		117	121	125	127	129
							101						119			129	131
55	56	57	72	73	74	75	76	77	78	79	80	81 T:	82	83	84	85	86
US 122	122	La	HT 179	1a	194	He	US	101	105	AU	Hg	11	PD	BI	Po	At	Rn
155	155	159	180*	101	186*	167	190*	193	195	197	201						
87	88	89	104	105	106	107	108	109	110								
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Dm								

White boxes – Mössbauer isotopes

Handbook of Nuclear Chemistry (Springer, 2004)

58 Ce	59 Pr 141	60 Nd 145	61 Pm 145 147	62 Sm 152 154*	63 Eu 151 153	64 Gd 154– 158*	65 Tb 159	66 Dy 160– 162*	67 Ho 165	68 Er 166 168*	69 Tm 169	70 Yb 172 174*	71 Lu 175
90 Th 232	91 Pa 231	92 U 238*	93 Np 237	94 Pu 239	95 Am 243	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr

Scheme of the experiment

Hyperfine interactions

Nucleus interact with the electric field of electrons (Coulomb, quadrupole) and magnetic field of electrons (magnetic dipole).

Example: steel

The standard pattern of a steel in which ferrite and austenite phases are present. The ⁵⁷Fe Mössbauer spectrum of the sample is a complex spectrum that is a sum of subspectra. The subspectra of the ferromagnetic ferrite with bcc *lattice and the paramagnetic* austenite with fcc lattice are also superimposed from elementary patterns because of the effect of alloying elements, although the Fe atoms can only occupy one single crystallographic site in each phase.

Mössbauer spectrometer

https://serc.carleton.edu/research_education/geochemsheets/techniques/mossbauer.html

Synchrotron Mössbauer spectroscopy (SMS)

1. Excitation by a short synchrotron pulse (~100 ps)

t < 0

t = 0

2. Long nuclear fluorescence (~100 ns)

W. Sturhahn, J. Phys.: Condens. Matter 16 S497 (2004)

SMS on Fe₂O₃

S.-M. Shim et al., "Electronic and magnetic structures of the postperovskite-type Fe_2O_3 and implications for planetary magnetic records and deep interiors" PNAS 106 (14) 5508-5512 (2009)

What to remember

- Heisenberg uncertainty for energy resolution and life-time: $\Delta E \cdot \Delta t \geq \frac{\hbar}{2}$
- Mössbauer effect is recoilless absorption/emission of γ-quantum by a nucleus. It is only possible in solid state and at low temperatures
- Mössbauer effect allows to determine local electric and magnetic field at a nucleus
- There are many Mössbauer-active isotopes, including ⁵⁷Fe
- One can get a Nobel Prize for a PhD thesis